Monday, May 26, 2014

Abcs Of Siemens HMI Software

By Marci Glover


Human-computer interaction as a branch of computer science is concerned with the user-oriented design of interactive systems and their human-machine interfaces (HMI). Knowledge of computer science is complemented by cognitive science, ergonomics, sociology to create Siemens HMI software. Important sub-areas of human-computer interaction, include usability engineering, E -learning, context analysis, interaction design and information design.

Human-machine interaction (HMI) is a parent field which deals with similar issues but generalizes the interaction between humans and the machine. An important aspect in this field involves the usability of software and hardware. The standard EN ISO 9241 (especially Part 110 and 11) defines which requirements are placed on the usability of software or hardware.

In any case, in this context of human-machine interfaces, usability and accessibility aspects are of primary importance. With the advent of digital instrument clusters, it is becoming increasingly important to conduct in-depth study of HMIs in the automotive industry. In computer science, the term GUI (Graphical User Interface or GUI) indicates the layer of modern operating systems that allows interaction with the user through graphics rather than with keyboard commands (command line interface, CLI).

The term human-machine interface is sometimes used to refer to what is best described as direct neural interface, or some imaginary technology can make a direct connection between the human nervous system and a computer. The user interface is to be understood as an intermediary between man and machine, and may include both the hardware and software side of a machine.

As an example, when driving the driver uses the steering wheel and accelerator to determine direction and speed. The steering, throttle and dashboard instruments in this example, are the human-machine interface. The vehicle reacts to the interaction. An important aspect of human-computer interaction entails ensuring user satisfaction.

On the computer side, technology design of computer graphics, operating systems, programming languages and development environments is important. On the human side, communication theory, linguistics, sociology and cognitive psychology are critical aspects. Due to the interdisciplinary nature of human-computer interaction, people with different levels of training contribute to its success.

One can observe that the HMI are increasingly disconnected from the actual implementation of controlled mechanisms. Alan Cooper distinguishes three interface paradigms: technological paradigm - the interface reflects how the controlled mechanism is built. The paradigm of metaphor that can mimic the behavior of an interface as an object of everyday life and thus already controlled by the user. Idiomatic paradigm that uses interface elements in stereotyped behavior, consistent and therefore easy to learn but not necessarily modeled on real-life objects.

From an organic point of view, it is possible to distinguish three types of HMI: The acquisition interfaces: buttons, knobs, joysticks, computer keyboard, MIDI keyboard, remote control, motion sensor, microphone with voice recognition. The combined interfaces: touch screens, multi-touch control feedback. Games and virtual worlds such as Second Life, Everquest or Wolfenstein, where several players or users enjoy overall immersion in a common landscape, provide insight into new relationships that can be implemented through realistic interfaces.




About the Author:



No comments: